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We present a comparison of cluster of very computational complexities for use in large scale
gene expression analysis. Synthetic data of the form of multi-dimensional hierarchical
Gaussian trees were counstructed and allowed us a direct comparison of clustering results to a
‘ground truth”. We introduce the use of using normalized mutual information (NMI) and
receive operator characteristics (ROC) curves. Expectation maximization (EM), self
organizing maps (SOM), k-meaus, and a phylogenetic clustering algorithms were compared
varying the dimensionality, size, variance and structure of the synthetic data. SOM and EM
performed nearly equally in low dimensions, but EM was able to continue promising
performance

L Introduction

The advent of large-scale gene expression analysis provides biologists with
unprecedented amounts of quantitative data that comprise gene expression profiles
of hundreds to tens of thousands of genes in many tissues, culture conditions, and
genetic variants. The expression state of a cell can be assayed by extracting
mRNA and then measuring the relative abundance each message. Currently, the
two most prominent techniques for large-scale expression analysis involve 2-D
DNA microarrays made by synthesizing complimentary DNA oligonucleotides on
a glass slide via photolithography [1, 2] or by deposition printing of longer DNAs
(usually cloned ¢cDNA sequences prepared by PCR amplification) on a glass
slide[3] (reviewed in [4]4).

A major goal in the analysis of large-scale gene expression data is to find sets of
genes whose members have similar expression patterns. The challenge is to detect
such similarities of expression pattern when working with sample numbers in the
range from 10's to 1000's of different individual tissues, cell types, tumors, or
growth conditions. Inspection and intuition, which have traditionally served
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biologists well when they compared a few genes in 2 - 10 RNA samples, quickly
fail when dealing with data sets of this scale. The application of clustering
algorithms provides a way to reveal hidden structure in large datasets. A variety
of clustering algorithms have been developed over the past three decades to deal
with problems of this general form, and a few of these have recently been applied
to large scale gene expression data [5-7]. The various algorithms make
substantially different assumptions and operate by different mechanisms. This
raises questions about how different algorithms will differ in detecting important
structure in a given dataset, depending on properties that include both underlying
biology and experimental noise. They will also likely differ in the nature and
amount of artifactual association among genes and samples that they report. To
best interpret the sensitivity and bias that each algorithm and parameter set
introduces in a given application, it would be desirable to have a systematic
method for evaluating the output of different algorithms and comparing them by a
common metric.

In this work we compare three major types of clustering algorithms. Tne first type
is phylogenetic clustering which uses a bottom up approach. The result is a very
deep relatedness tree from which clusters can be extracted {7]. Expectation
maximization (EM) algorithms [8], in contrast, work in a top down fashion when
performed recursively or hierarchically ([5, 9]). Self organizing maps (SOMs) {6,
10] also use a top down strategy, but they differ because they first map the reults
into low dimensional space which maintains proximity information from the
higher dimensional space or gene expression trajectory.

There are also several choices of implementation that are expected to have impact
on the output. The first of these is selection of the distance metric, a measure of
relatedness, which can influence the sensitivity of an algorithm to particular
features in the dataset. Euclidean and correlation distance metrics are two basic
types whose implications we investigate. The Euclidean metric is sensitive to both
magnitude and direction of change among data vectors. In contrast, a correlation
distance metric is insensitive to the magnitude of change but retains sensitivity to
the direction of change. Depending on the specific biological context and
technical properties of the data, arguments favoring the application of either of
these distance measures can be imagined, and examples are discussed. By using
synthetic data that provides us with a known "ground truth" structure, we test the
impact of both distance measures with data of differing structures.

A second potentially important implementation choice for some algorithms is the
statistical model used. We explore here a collection of Gaussian distributions and
discuss provisions for outlier rejection versus an alternative model that is a
collection of Lorentsian distributions (the latter distributions have "heavier tails"
and so give different weight to data vectors at relatively large distances from their
cluster centers). We also discuss implications of distribution choice, depending on
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whether all genes trom an organism are assayed, as is typically done for yeast,
compared with assays of smaller fractions of all genes, as is presently the case for
mouse or human expression studies. This latter issue of complete versus
incomplete gene sets is an especially important one for work done with any
reduced complexity gene chip or any genome for which a fractional gene
collection is all that is available.

A third potentially important choice for implementation of EM family algorithms
is whether or not deterministic annealing is to be used. Deterministic annealing is
a well established procedure designed to give superior global optimization by
reducing the effect of local minima on the optimization process. Results from this
study of synthetic data sets of varying structures identify candidate settings in
which such local minima are likely to be problematic

In this paper, we introduce a framework for comparing and interpreting the results
of many clustering algorithms. In addition to traditional mean/sigma plots and
other visual inspection tools, we provide a mechanism to quantitatively assess
cluster quality using receiver operator characteristic (ROC) curves [11]. We also
introduce the idea of using a confusion matrix and normalize mutual information
(NMI) scores [12] as a mechanism of interpreting the degree of agreement and
disagreement between different clusterings of the same dataset.

Although the generation of these statistics aids in the interpretation of clustering
results, it is not usually known what the complete "correct” clustering is for data
sets in the current literature, since the underlying expression circuitry for even the
simplest organism is far from fully understood. To address this, we employ
synthetic data that has been constructed from several known architectures. This
provides an additional way to evaluate the relative abilities of each of the
clustering metheds to find a known ground truth structure in the data one varies
parameters such as the number of different measurements (dimensionality),
relative separation of clusters from each other (variance ratio), and number of
model genes for which data are provided.

L Methods

Synthetic data with different known structures were generated and then used to
assess the abilities and sensitivities of different clustering methods and the
implications of choosing specific parameter sets. First, cluster centers were
generated hierarchically using Gaussian distributions. A top level cluster was
created with a variance of 1 and its center at the origin. Points were selected from
this distribution to function as the cluster centers for the next level in the tree. The
variance of these next level clusters is the product of the parent’s variance and an
adjustable parameter (the variance ratio). The variance ratio is held constant
throughout the generation of a given synthetic data set and is equal to a child
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cluster's variance over its parent's variance. The larger the variance ratio, the
greater the cluster distributions overlap. Data points are eventually created from
the bottom-most or leaf clusters. We choose to generate our synthetic data from a
set of Gaussian distributions because of the frequency in which it occurs in nature
(this is largely attributed to the law of large numbers) .

Using this general architecture or grammar we created four different types of
synthetic data trees, two flat and two hierarchical. We generated Flat trees with
either with 15 or 5 clusters (“15 trees” and “5 trees” respectively) whose centers
were selected directly from the top level, or root, Gaussian. Hierarchical trees
were generated with either 15 or 5 clusters whose centers were selected from the
root Gaussian and then 3 more cluster centers were selected from each of those
Gaussian (15,3 trees or 5,3 trees respectively). We adjusted the dimensionality of
the dataset to 3, 10, or 30. For each dimension we also set the variance ratio to .1,
.3, .5, or 1. Then, for each dimensionality / variance ratio pair we also varied the
number of points created from 75, 750, 7500. In all, we created 36 different
synthetic data sets. '

Each of the above data sets were then subjected to the following clustering
algorithms and the resulting cluster assignments were compared. This study is
designed to compare: cross-validated expectation-maximization mixture of
Gaussian (cv-EM-MoG) [13, 14] cv-EM mixture of Lorentzian (cv-EM-MoL), a
deterministic annealing version of cv-EM-MoG [15] K-means [5], phylogenetic
clustering (Xcluster) [7], and self organizing maps (SOM) [6, 10]. We also
generated a “ground truth” clustering for each of the data sets which was derived
directly from generation of the data.

The widely used expectation maximization (EM) family of clustering algorithms
when performed recursively on a dataset provide a top down approach to partition
the data into a set of clusters [8, 16]. Usually the clusters are assumed to be a
muiti-dimensional Gaussian distribution. Although, we also attempted the
clustering assuming Lorentzian distributions. In either case, the underlying
assumption is that each data vector was generated from one cluster and its value
was obtained from a random sampling of its cluster's distribution. EM clustering
algorithms attempt to discover the cluster membership for each data point by
maximizing the likelihood. Normally using EM, the number of clusters must be
preset. However, in the context of gene expression analysis it is unlikely the
number of cluster is known. We used cross validation (cv) to estimate how many
clusters should be used to describe our datasets [13, 14]. We performed this by
maximizing the likelihood of each clustering as a function of the number of
clusters.

We provide slightly more detail on the EM algorithms as used here [17]. We use
EM with a diagonal covariance in the Gaussian, so that for each feature vector
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component a (a combination of experimental condition and time point in a time

course) and cluster & there is a standard deviation parameter Cwa. In
preprocessing, each concentration data point is divided by its value at time zero
and then a logarithm taken. The log ratios are clustered using EM. Optionally,
each gene’s entire feature vector may be normalized to unit length and the cluster
centers likewise normalized during the iterative EM algorithm. This gives a
variation of diagonal-covariance Gaussian mixture models which, for scalar
variance, corresponds to a correlation distance metric rather than a Euclidean
distance metric.

In order to choose the number of clusters, k, we use the cross-validation algorithm
described by [13]. This involves computing the likelihood of each optimized fit
on a test set and averaging over runs and over divisions of the data into training
and test sets. Then, we can examine the likelihood as a function of k in order to
choose k. Normally one would pick k so as to maximize cross-validated
likelihood.

To initialize the' EM clustering algorithm each cluster is given a mean and a
variance. After initialization, the probabilities of each data point belonging to a
cluster are calculated iteratively. Using these probabilities to weight cluster
membership each cluster calculates a new mean and standard deviation using all
the data points. This process is repeated until a local optimal solution is found.
Cluster membership is then defined for each point as the cluster that they have the
highest probability of belonging to. K-means is a computationally less intensive
derivative of EM in which the algorithm has been modified to make cluster
membership "hard”, so that every data point at every step belongs only to the most
probable cluster and has no influence on other clusters. Both EM and k-means are
sensitive to the initial starting position of the clusters, for this reason every EM or
K-means clustering was repeated S times varying only the random seed.

Phylogenetic clustering was the first cluster algorithms applied in the domain of
large scale gene expression analysis [7]. It functions with bottom up strategy,
where every gene begins belonging to a unique cluster. Each cluster is then
compared to every other cluster and the two that are most similar to each other are
combined and their mean is calculated. The process is repeated until only one
"cluster” (the entire relatedness tree) remains.. Various approaches, including
inspection, may then be used to select boundaries for membership in proposed
discrete subclusters.

EM, k-means and phylogeneic clustering algorithms all rely on the calculation of
distance between data points to determine the similarity of a data points or
clusters. We performed all of the above clusterings using both a correlation
distance
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Self organizing maps (SOM) [6, 10} attempt to map high dimensional data into
clusters that exist in a much Jower dimensional space (typically 1 or 2
dimensions). Each node, or cluster, in the low dimensional space represents some
unique but general trajectory (or expression profile over a set of experiments) in
the high dimensional space. Proximity in the low dimensional SOM corresponds to
similarity in the high dimensional, experimental space. The algorithm is
initialized by creating candidate clusters, or nodes, in the low dimensional space
and then creating a mapping of each of the nodes into the higher dimension space.
The relative position of the nodes in the low dimensional map is maintained in the
higher dimensional space. Iteratively, a data point is selected at random and the
node that is closest to that data point is moved towards it. The movements are
large when the node is far from the data point and progressively as the distance to
the data point decreases. The step sizes are also reduced as the number of
interactions increase.

Twenty five independent clustering were run on 36 different data sets, to evaluate
robustness, reproducibility, and ability to resolve the underlying data cluster
membership and structure. Each clustering result was compared to the “ground
truth” cluster structure and to other clustering runs of the same dataset by
calculating receiver operator characteristic (ROC) scores [11] and normalized
mutual information (NMI) scores [12]. NMI comparisons were also performed for
results from both EM and K-means clustering runs that differed from each other
only by the random seed used.

NMI generates a score based on the agreement between two clustering results (the
score ranges from a value of O to 1). The average information contained within a

H(s)= X,p-log,-p
clustering can be defined as clusters . Given two clusterings A
and B and the average information shared between them equals H(A,B). The
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information that one clustering relays about the other is equal to the mutual
information I(A; B). From this NMI is defined as:

() [AB)_HWA-HB)-H@AB) | HAB -H®B)
M= H(A) - H(A)

ROC analysis is a traditional technique used to evaluate fidelity of signal
detection. An ROC curve is a plot of the proportion of true positives vs. false
positive [11]. Here we have adapted it for "cluster gazing" by generating ROC
curves in which the curve is a plot of the proportion of cluster members vs. non-
members within a given cluster's most distant boundary. The area under this
curve functions as good single value diagnostic measure of cluster overlap.

3. Results and Discussion
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Figure 1b:

Summary of NMI statistics over varying synthetic data parameters. Mean NMI
score plotted against variance ratio and number of data points. Black bars are 75
points, gray bars are 750 points, and white bars are 7500 points. Figure 1a) CV-
EM MOG clustering with a Euclidian and correlation metric, Figure 1b) SOM
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The NMI metric and ROC curves defined in Methods were used to measure and
compare the effects on clustering performance that result from varying five
parameters for implementations of three major types of clustering algorithms (EM,
SOM, and phylogenetic). To permit us to compare output from each algorithm
with a defined "ground truth" cluster structure, synthetic microarray gene
expression datasets were generated as described above. Underlying this modeling
exercise is a simple and plausible biological correlate for each cluster: a group of
genes that are co-expressed under multiple conditions (dimensions in these
synthetic datasets) because they share one or more functionally identical
transcriptional enhancers or silencers (shared RNA turnover signals could also be
at work, but they are conceptually identical to similar enhancers for the purposes
of this study). Each of these hypothetical transcriptional enhancer or silencer
types would cause the adjacent gene that it regulates to be transcribed similarly in
response to a defined set of intra- and extracellular signals mediated by sequence
specific DNA binding proteins and their associated coregulators.

Our Algorithm tests were performed on four different data structures: Two were
"flat" cluster trees, one composed of 5 clusters and the other with 15 clusters.
Each of these clusters would correspond biologically to a different group of genes,
each defined by their use of functionally identical enhancers or silencers. The
other two test cluster structures are hierarchical. The first consisted of five super
clusters, each composed of three subclusters; and the second consisted of 15 super
clusters, each containing three subclusters. In this dataset architecture, the
biological correlate of each subcluster would again be one or more enhancers or
silencers shared by members of the subcluster. However the hierarchical nature of
the trees also indicates a relationship among subclusters of the same supcrcluster
that makes them quite similar to each other. This might arise from any of several
vnderlying biological models: A very straightforward one would be that each
gene in the supercluster possesses one functionally similar enhancer and one novel
one. The resulting expression patterns would share a common feature directed by
the supercluster enhancer, and also have novel features corresponding to their
unique enhancer. For each data structure, increasing dimensionality, model gene
number, and variance ratios were tested.

Simple intuition might predict that clustering algorithms in general will perform
best when clusters are well separated from each other (lower variance ratios) and
when datasets are larger (here, gene number in each cluster). We found that this
intuition held in general for all algorithms tested. However, each algorithm scaled
differently (Table 1; Figure 1). Among the top-down strategies, EM/CV showed
consistent improvements as the number of data points (model genes) increased.
The EM/CV implementation that used a Euclidean distance measure was strongest
when the datasets and dimensionality became large. This was in contrast to the
Self Organizing Map which did not improve as a function of increasing number of
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model genes. This difference is likely to be relevant to applications to current
and future real datasets, as realistic gene numbers are between 6,000 (the gene
number for complete yeast gene arrays or typical, reduced complexity human gene
arrays) and 60,000 (human or mouse, estimated complete gene sets). Also, as
predicted, more tightly clustered genes (low variance ratios of 0.1 for example)
were generally easier for the algorithms to find correctly than "fuzzier" clusters
with high variance. However, even this simple conclusion had interesting
exceptions that were algorithm specific. Thus NMI scores for EM/CV Euclidean
clustering runs were more successful at intermediate variance ratios (0.3 or 0.5),
than at either 0.1 or 1.0 in the cases where the underlying data structure was
hierarchical. Further investigation showed that at the lowest variance ratio, this
algorithm was apparently réadily able to correctly cluster the superclusters, but
was unable to use increments small enough to find a define very narrow
subclusters.

When using SOMs the structure of the low dimensional map is expected to have
considerable impact on performance, and this was evident in our tests. We
observed that for clustering our synthetic data 1x25 maps always out performed
5x5 maps and 1x10 maps always performed sub optimally. The extreme sub-
optimal performance of the 1x10 maps on every dataset except the 5 member flat
trees could simply reflect the fact that the starting node model doesn’t provide
enough elements to correctly partition the data. The 1x25 maps did much better
for the larger cluster trees and for higher dimensionality. This may be reflect the
fact that each cluster in the higher dimensional space is quite distant its neighbors.
This might also explain the relatively poor performance of the 5x5 map, which
would then be too limiting, forcing many more proximal similarities than the 1x25
map in the low dimensional representation of the clusters.

EM/CV and phylogenetic clustering (xcluster) performances both depended on the
choice of distance metric. The Euclidean metric was uniformly superior to the
correlation distance, but this was expected for this data architecture. Thus, we
generated our synthetic data from a collection of Gaussian clusters, a Euclidean
distance metric describes this space well, as it contains information on both
direction and magnitude of each vector from the cluster mean, while the
correlation metric ignores differences in magnitude. However we anticipate that
in some biological settings the correlation metric will be superior, and the analysis
here begins to define the penalty for its use. For example, a favorable biological
setting for the correlation metric would occur when one wanted to uncover the
regulatory similarity in two groups of genes of the following structure: Each
member of group A has a weak basal promoter and each member of group B has a
strong basal promoter, but genes in both groups are run by virtually identical
transcriptional enhancers. Thus the direction of change with different stimuli
would be governed by the enhancer and we would hope to infer this from
membership in the same cluster. However, the magnitude of expression change
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for A and B group members under differing conditions would be different due to
strengths of their respective basal promoter types.

SOMs and EM performed similarly, with SOMs performing slightly better when
the number of data points and dimensionality were low. As the dimensionality of
the data set increased, and the dimensionality reduction by the SOM became
correspondingly larger, the SOMs became less effective, at least within the range
of node structures tested. EM on the other hand performed better when given high
dimensions and a large number of data points. The same appeared true for
phylogenetic clustering implemented by xcluster with agglomeration to set cluster
boundaries. ‘

Performance cost comparisons: The computational costs of the different
algorithms are considerably different as are their expected further scaling
properties at one log higher genes number and one to two log increases in
dimensionality. These latter increases in matrix sizes are pertinent for anticipated
studies with complete mammalian gene chips used with hundreds or thousand of
different tumor samples, cell types or drug dose response courses. First, K-means
is a relatively non-intensive implementation of EM, but it performed badly by
both criteria used here under most data structures tested, and it was therefore not
pursued in detail (data not shown). Among the others, SOMs are the least
computationally sensitive and scales well. However, our analysis showed a trend
disfavoring SOMs relative to x-clust-A (phylogenetic with agglomeration) at the
highest dimensionality, gene number and variance ratio. A further investigation at
still higher gene numbers and dimensionality seems warranted. The EM/CV
algorithm is much more computationally intensive. A key question to be resolved
in an extension of this study is the relative performance of each algorithm
compared with its computational cost at the highest matrix sizes biologists are
routinely likely to encounter.

Future Comparisons

Given the comparison framework presented here, further clustering algorithms can
be systematically compared and tested on synthetic datasets exemplifying different
biological assumptions. Prominent among the clustering algorithms yet to be fully
examined in this way, is the xcluster algorithm of [7] (augmented with suitable
"agglomeration" code to transform its binary cluster tree into other tree shapes),
and the deterministic annealing and Lorentzian variants on the EM algorithm for
mixture models.
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